- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Mahmud, Al Jaber (2)
-
Nguyen, Duc M (2)
-
Wang, Xuan (2)
-
Xiao, Xuesu (2)
-
Raj, Amir Hossain (1)
-
Veiga, Filipe (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper introduces Disturbance-Aware Redundant Control (DARC), a control framework addressing the challenge of human–robot co-transportation under disturbances. Our method integrates a disturbance-aware Model Predictive Control (MPC) framework with a proactive pose optimization mechanism. The robotic system, comprising a mobile base and a manipulator arm, compensates for uncertain human behaviors and internal actuation noise through a two-step iterative process. At each planning horizon, a candidate set of feasible joint configurations is generated using a Conditional Variational Autoencoder (CVAE). From this set, one configuration is selected by minimizing an estimated control cost computed via a disturbance-aware Discrete Algebraic Riccati Equation (DARE), which also provides the optimal control inputs for both the mobile base and the manipulator arm. We derive the disturbance-aware DARE and validate DARC with simulated experiments with a Fetch robot. Evaluations across various trajectories and disturbance levels demonstrate that our proposed DARC framework outperforms baseline algorithms that lack disturbance modeling, pose optimization, or both.more » « lessFree, publicly-accessible full text available June 1, 2026
-
Mahmud, Al Jaber; Nguyen, Duc M; Veiga, Filipe; Xiao, Xuesu; Wang, Xuan (, IEEE)This paper presents the development of a novel control algorithm designed for tasks involving human-robot collaboration. By using an 8-DOF robotic arm, our approach aims to counteract human-induced uncertainties added to the robot's nominal trajectory. To address this challenge, we incorporate a variable within the regular Model Predictive Control (MPC) framework to account for human uncertainties, which are modeled as following a normal distribution with a non-zero mean and variance. Our solution involves formulating and solving an uncertainty-aware Discrete Algebraic Ricatti Equation (ua-DARE), which yields the optimal control law for all joints to mitigate the impact of these uncertainties. We validate our methodology through theoretical analysis, demonstrating the effectiveness of the ua-DARE in providing an optimal control strategy. Our approach is further validated through simulation experiments using a Fetch robot model, where the results highlight a significant improvement in performance over a baseline algorithm that does not consider human uncertainty while solving for optimal control law.more » « less
An official website of the United States government
